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1. Abstract

Nonlinear waves destroy Anderson localization in disordered po-
tentials. Computational studies yield a subdiffusive wave packet
spreading, as also confirmed in experiments. Theoretical expla-
nations are based on chaotic dynamics assumptions necessary for
phase decoherence and delocalization. We follow the wave packet
dynamics and compute the time dependence of chaos indicators -
Lyapunov exponents and deviation vector distributions. Chaotic
dynamics is observed. It does not cross over into regular dynam-
ics. Chaos time scales stay shorter than the time scales of slow
wave packet spreading, allowing for complete thermalization of the
packet. Chaotic spots meander through the wave packet in time.
Therefore the previously assumed phase decoherence can persist to
arbitrarily large times, leading to a complete delocalization of wave
packets.

2. Model, equations and methods of analysis

The spreading of wave packets was numerically studied in a number
of classes of wave equations. Here we choose for practical reasons
a chain of coupled anharmonic oscillators with random harmonic
frequencies which belongs to the class of quartic Klein-Gordon
(KG) lattices. In a number of computational studies on wave
packet spreading this model is behaving very close to Nonlinear
Schrödinger equations with random potentials [2, 3, 5, 7, 8, 9, 10].
The Hamiltonian of the quartic Klein-Gordon chain (KG) of cou-
pled anharmonic oscillators with coordinates ul and momenta pl is
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The equations of motion are ül = −∂HK/∂ul, and ε̃l are chosen
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]
.

We analyze normalized energy distributions εν ≥ 0 using the sec-
ond moment m2 =

∑
l(l − l̄)2εl and the participation number

P = 1/
∑
l ε

2
l , which measures the number of the strongest excited

sites in εν.
During the wave packet evolution we further estimate the maxi-
mum Lyapunov exponent (mLE) Λ1 as the limit for t → ∞ of
the quantity Λ(t) = t−1 ln(‖~v(t)‖/‖~v(0)‖), often called finite time
mLE. ~v(0), ~v(t) are deviation vectors from the given trajectory, at
times t = 0 and t > 0 respectively, and ‖ · ‖ denotes the usual vec-
tor norm [11]. In our study we also compute normalized deviation
vector distributions (DVDs) wl = (v2
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l+N )/

∑
l(v

2
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l+N ).
We use the symplectic integrator SABA2 with corrector [12, 3] for
the integration of the equations of motion, and its extension accord-
ing to the so-called tangent map method [13, 14] for the integration
of the variational equations. We considered lattices with N = 1000
to N = 2000 sites in our computations, in order to exclude finite-
size effects in the evolution of the wave packets, and an integration
time step τ = 0.2, which kept the relative energy error always less
than 10−4.

3. Results

We study the evolution of trajectories in three different cases. The
trajectories in this cases are known to evolve in the asymptotic
regime of ‘weak chaos’ [2, 3, 5].

• Case I : single site excitation with total energy E = 0.4 and
W = 4

• Case II : initial energy density ε = 0.01 distributed evenly among
a block of 21 central sites for W = 4

• Case III : initial energy density ε = 0.01 distributed evenly
among a block of 37 central sites for W = 3

In Fig. 1 we present the time evolution of m2, P and Λ of a single
trajectory of Case I.

Fig. 1 (a) Time evolution of the second moment m2 and the participation

number P for one disorder realization of Case I. Straight lines guide the eye for

slopes 1/3 (solid line) and 1/6 (dashed line). (b) Time evolution of the finite

time maximum Lyapunov exponent Λ for the trajectory of panel (a). The

straight lines guide the eye for slope −1 (dashed line), which corresponds to

regular motion and −0.25 (solid line).

In Fig. 2 we compute the evolution of a part of the Lyapunov
spectrum.

It is clear that the evolution of the mLE defines also the behaviour
of the rest LEs.

Fig. 2 The ten first LEs of a single realization of Case I. The mLE (blue line)

defines the evolution of the rest LEs (cyan lines). The straight lines guide the

eye for slopes −1 (solid) and −0.25 (dashed).

In order to substantiate our findings, we average log10 Λ over 50
realizations of disorder and extend our study to two more ‘weak
chaos’ parameter cases, namely Case II and Case III.

Fig. 3 Time evolution of the averaged Λ over 50 disorder realizations for the

‘weak chaos’ Case I,Case II and Case III. Straight lines guide the eye for

slopes −1 and −0.25.

We further differentiate the curves in Fig. 3 following the approach

used in [5, 7], estimate their slope aΛ =
d(log10 Λ(t))
d log10 t

, and show the

result in Fig. 4.

Fig. 4 Numerically computed slopes a<Λ> of the three curves of Fig. 3. The

horizontal line denotes the value −0.25.

So far we have clear numerical proof that the dynamics inside the
spreading wave packet remains chaotic up to the largest simulation
times, without any tendency towards regular dynamics. To sub-
stantiate the assumptions needed for subdiffusive spreading theo-
ries, we will compare the Lyapunov time TL defined by Λ with
the time scales which characterize the subdiffusive spreading. A
first time scale of this kind, T , can be obtained from the growth of
the second moment m2 ∼ t1/3. It follows that the inverse of this
timescale, i.e. the effective diffusion coefficient D, is a function of
the densities, and decays in time as [10]
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A second time scale can be obtained by estimating a spreading time
Ts given by the increase of P by one (site), i.e. Ts ∼ 1/Ṗ (with

P ∼ T 1/6). It follows
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As it follows from Eqs.(2,3), the dynamics remains chaotic, and
the chaoticity time scale is always shorter than the spreading time
scales, and especially their ratio diverges as a power law. With
that we can confirm for the first time the assumption about persis-
tent and fast enough chaoticity needed for subdiffusive spreading
theories.
A second very important assumption for subdiffusive spreading the-
ories is based on the fact that chaoticity is induced by nonlinear
resonances inside the wave packet, which are the seeds of determin-
istic chaos and have to meander through the packet in the course
of evolution.

A way to visualize the motion of these chaotic seeds is to follow the
spatial evolution of the deviation vector used for the computation of
the mLE. The energy distribution is also presented for comparison.

Fig. 5 Normalized energy distributions of an individual trajectory of Case I at

t = 4× 106, t = 3× 107,t = 4× 108 .

Fig. 6 The energy distribution over time. The times at which the distributions

in Fig. 5 are taken are denoted by straight horizontal lines. The white line

indicates the mean position of the distribution.

Fig. 7 Normalized deviation vector distributions of an individual trajectory of

Case I at t = 4× 106, t = 3× 107,t = 4× 108 .

Fig. 8 The deviation vector distribution over time. The times at which the

distributions in Fig. 7 are taken are denoted by straight horizontal lines. The

white line indicates the mean position of the distribution.
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